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ABSTRACT :

CSA(Cable Scissors Arch) has a possibility of introducing a dynamical expression into
the architectural space design,because of the continuously changing form structure.The
structural analysis of CSA is developed here,by a mathematical treatment of the pulley-
joints as 'Slipping Pin Joints without Friction between cable and pulley'. According to
the computational results of CSA compared with SA(Scissors Arch) and STA(Scissors
Trussed Arch),it is shown numerically that the zigzag cable plays an important roles for
CSA in the point of structural efficiency improvement. )

LINTRODUCTION . -

The continuously changing form structure has a new possibility to introduce a '
dynamical expression into the architectural space design. Scissors-type may be
considered as one of the possible structures to change the form continuously. In case of
the realization of scissors-type expandable structures,one of the most important
problems is concerned with the rational method of expanding and rocking all the time.
The author proposed a new type of expandable arch 'CSA(Cable Scissors Arch) shown
in Fig.1,2' which finds out a solution to these problems at the same time (Kokawa,1995).
As shown in Fig.2,a zigzag flexible cable passes through the pulleys which are installed.
at the connection points between the scissors units. As a tension force always works in
the cable under the gravity load,CSA will be a stable and statically determinate
structure all the time. Although it doesn't have the chords,CSA might be considered as a
kind of the truss structure which resists mainly axial forces.It is supposed intuitivelzri
that CSA has far the better mechanical efficiency in the points of strength an
rigidity,compared with scissors structures without cable 'SA(Scissors Arch) as shown in
Fig.3'. However the evaluations have not been clear numerically yet.

The main purpose of this paper is to investigate numerically the structural behavior of
CSA. First of all the statical analysis of CSA is developed here,by a ‘mathematical
treatment of the pulley-joint as 'Slipping Pin Joint without Friction between cable and
pulley'. And then,the structural behavior of CSA is numerically discussed by comparing
with SA and 'STA(Scissors Trussed Arch which consists of scissors units and pin-
jointed strut member shown in Fig.4)'.-’

2.ANALYTICAL METHOD OF CSA
2.1 Cable Arrangements and Mathematical Treatment of Pulley Joint -
Fig.5 shows the cable arrangements of CSA which is the subject of this paper ,although
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Fig.l Cable arrangement

Fig.2 CSA (Cable Scissors Arch)

L

Center hingef g

strut
Fig.3 SA (8cissors Arch)

Fig.5 Cable arrangement(double)

Fig.4 STA (Scissors Trussed Arch)
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a bit different arrangements from Fig.1. Each cable starts at the central hinged point and
zigzag passes through pulleys to each supporting end, and then return back to the
center by the same zigzag passing through.Although small friction forces actually exist
between the cable and the pulley joint,the mathematical model of the joint is treated as
'Slipping Pin Joint without Friction between cable and pulley'. Therefore,it is supposed
that each cable has a constant tension force whole the structure.

2.2 Expressions of Transfer Matrix _

Fig.6 shows all kinds of forces in unit[i] and [i+1]. Considering the euilibrium( = X=0,
3. Y=0) at joint no.® and @), the relation between the right side forces vector:{X;}
and the left side vector:{X;, },is given in Eq.(1).

(i+1)id
'Q(IH )id
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Fig.6 Internal and external forces

(X }=[al{x; }+{a}T —-(1)

Where T denotes thé unknown cable tension force which is constant whole the
structure,and '
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And,the relation between {Xy} and {X4,,y} is shown in Eq.(2), considering the
equilibrium of point no.®.

{Xaan}=BH{Xe}+ {0} — @
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Eq.(3) which indicates the relation between {X;} and {X;,1y}is derived from Egs.(1)

and (2).

{X(i+1)l}=[C]{Xﬂ}+{d}T+{bi} P,

Where, [C]=[B][A]
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From Eq.(3),{X;} can be expressed by using {X;;} which indicates the end force
vector connected to the pin support,as written in Eq.(4).

i-1 i-1

{Xi1 }=[C](H) {Xn}+ Y [C](l_k_l)){d}T’f Y [c]¢FF) {b,}?y ()
k=1 k=1

Therefore,{Xp;} is obtaned by substituting i=n into Eq.(4).

n-1 n-1
Y 1) tay 1o Fre) ) gy e,

k=1 k=1

{Xu} C](n-l){xn}*(
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Finally,the other end force vector:{X, .} which is connected to the central hinged point,
is expressed in Eq.(5).

n-1 n-1
{Xe }=[A1[C1C™ £x,}4(A] k2=1[01"""")) {d}T+[A] %‘1[01(“""1) {ve}Px —0)

2.3 Expression of {X;;} and {X,,}

Refering to Fig.7 ,{X;;} is obtained by taking account of the equilibrium at the pin
support.

Pﬂsin(e-q;o) +voos(0-cpo)
1 sin20 sin20
={e = 0 = 0 > cenas
{Xn}={e}T+{1} . {e} [(l’l - 1) Hsin(e+op0) _vcos(eﬂvo) ©
sin20 sin20
{ 0

Fig.7 Equilibrium af supporting end Fig.8 Equilibrium at center hinge

Where H and V indicate the horizontal and vertical reaction at the pin support
respectively,and they are ex'plicitly expressed with the geometrical parameter and
external forces because CSA is a kind of 3-hinged arch which means a statlcally
determinate structure.
On the other side,Refering to Fig.8 ,{X, } is obtained by thc equilibrium at the center
hinged point.
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2cos® 4sinf

{(Ku}=tedrele) o Ce>={ .° » ¢+ )

e 40
2cos® 4sind
0 .

And then, the following equation(8) concerning with Tis derived from {X,}={Xp}-

. n-1
[a)[c]™™) {e}4[A] kI_IICl(""‘"))(dh{a}-{e))T

n-1
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Four values of T are obtained from Eq.(8),but they are perfectly same.After substituting
T into Egs.(4) and (1)all forces are obtained finally. After allithe only equilibrium
conditions are needed to get the internal forces of CSA.The calculations of point
displacements are based upon the principle of virtual work.

3.ANALYSIS OF SA

Because SA is a kind of 2-hinged arch as shown in Fig.3,the verncal reactlon V is
obtained easily. It is possible to analyse here by treating H as the unknown horizontal
reaction at the supporting point of SA. First af all, as the zigzag cable does not exist in
this case,T has to take zero at all equations of the previous section 2. And {X;;} is

shown as follows.

r cos(68-9,) ’ sin(8-9)
sin20 sin20
{xu}"'{;}v*'{“}ﬂ » {t)= ws(gwo) b, {n}= sin(6+?p0) -——-(9)
" sin28 sin20
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And then,taking consideration of the symmetrical conditions concerning with the
central line from {X, }={X, y},the following equation about H is obtained.

(el -1a11c1ED) {n}u

n-1 n-1 ’
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Four values of H are obtained from Eq.(10),but they are perfectly same.
The analytical method of STA was described at the previous paper(Kokawa,1995).

4.NUMERICAL RESULT AND DISCUSSIONS

The structural behaviour of CSA is investigated numerically in comparison with that of
SA and STA as for the model with following specific parameters.

General form: Circular arch,10m span and 4m rise.

Member of scissors unit: Sectional area =100cm?, inertia moment=833cm* ,Young's
modulus=70t/cm?2, member length=103.71cm (1;=49.00cm , ,=54.71cm) and number of

units=8(one side).

Cable: Sectional area=1cm?,Young's modulus=2000t/cm?2.

In case of STA,the sectional area of the pin-jointed strut member becomes 2cm?,
because of the same sectional area as CSA's double cables.

Loading: Vertically concentrated 10kg every cross point

The vertical displacement ,axial force and shear force of CSA,SA and STA is shown in
Fig.9,10 and 11,respectively.
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- 41 CSAand SA

Refering to Fig.9 and 10, it is
recognized easily that the zigzag
cable produces the improvement of
mechanical efficiency in the points
of strength and rigidity. As CSA and
SA are both statically determinate
structures,a first local failure leads
immediatelly to the general failure of
these structure.And the bending
moment at the cross point of scissors
unit,that is, the shear force is seemed
to be deeply related to the failure.
The ratio of the maximum shear
forces between SA and CSA ) 82 e temsion:
SA/CSA becomes 258.6Kg/44.1Kg ‘ . 2 Te1. 66 (constant)
,50 the strength of CSA is about 6 ,
times of SA. On the other side,the 84 (b) Axial force (X107 4)
distributions of vertical displace-
ments are similar to each other,but
the magnitude is quite different.For
example, the maximum displace-
ments of both structures take place
in the central point,but the ratio of
them,CSA/SA becomes 128.69 mm /
4.035mm(=31.9). Therefore it is
recognized that the zigzag cable is
very useful for the improvement of
structural rigidity.

4.2 CSA and STA
Refering to Fig9 and 11LSTA is
superior to CSA in the structural Fig.9 CSA (Cable Scissors Arch)

efficiency,but the diference is not so

big as between CSA and SA. The ratio of maximum shear forces CSA / STA(=44.1Kg
/20.3Kg) becomes 2.16,s0 it is estimated that the strength of STA is about 2 times of
CSA under such a loading.Furthermore,two bending moments at a cross point every
scissors unit,are almost same in case of STA,but the one is very small and the other is
concentrated in case of CSA. Distributions of axial forces have same tendency,and the
ratio of the maximum values CSA/STA(=103.2Kg/77. 6Kg) becomes 1.33. T(tension
force of CSA's cable) is constant 16.6 Kg,so 33.2Kg in double cables. This value is
almost same as the average tension force of the pm-;omtcd strut in STA. The maximum
vertical displacement of the both models take place in the center points,and the ratio
CSA/STA(=4.035mm/3.843mm) becomes 1.05,although the mode of displacements is
different from each other.
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_L---"T126.99 128.69
L= 2167

(c) Vertical disp. (ﬁ)

Fig.10 SA (Scissors Arch) Fig.1ll STA (Scissors Trussed Arch)

5.CONCLUSION :

Treating the mechanical model of the pulley-joint as 'pin joint without friction beween
pulley and cable',the structural analysis of CSA has been developed. The structural
behaviour of CSA was compared numerically with SA and STA as for a specific
geometrical model. As the results,it is confirmed numerically that the zigzag cable plays
an important roles for CSA in the point of structural efficiency improvement.
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